Tellius
  • 🚩Getting Started
    • 👋Say Hello to Tellius
      • Glossary
      • Tellius 101
      • Navigating around Tellius
      • Guided tours for quick onboarding
    • ⚡Quick Start Guides
      • Search
      • Vizpads (Explore)
      • Insights (Discover)
    • ✅Best Practices
      • Search
      • Vizpads (Explore)
      • Insights (Discover)
      • Predict
      • Data
    • ⬇️Initial Setup
      • Tellius architecture
      • System requirements
      • Installation steps for Tellius
      • Customizing Tellius
    • Universal Search
    • 🏠Tellius Home Page
  • Kaiya
    • ♟️Understanding AI Agents & Agentic Flows
      • Glossary
      • Composer
      • 🗝️Triggering an agentic workflow
      • The art of possible
      • Setting up LLM for Kaiya
    • 🤹Kaiya conversational AI
      • ❓FAQs on Kaiya Conversations
      • Triggering Insights with "Why" questions
      • Mastering Kaiya conversational AI
  • 🔍Search
    • 👋Get familiar with our Search interface
    • 🤔Understanding Tellius Search
    • 📍Search Guide
    • 🚀Executing a search query
      • Selecting a Business View
      • Typing a search query
      • Constructing effective search queries
      • Marketshare queries
    • 🔑Analyzing search results
      • Understanding search results
      • Search Inspector
      • Time taken to execute a query
      • Interacting with the resulting chart
    • 📊Know your charts in Tellius
      • Understanding Tellius charts
      • Variations of a chart type
      • Building charts from Configuration pane
      • List of chart-specific fields
      • Adding columns to fields in Configuration pane
      • Absolute and percentage change aggregations
      • Requirements of charts
      • Switching to another chart
      • Formatting charts
      • Advanced Analytics
      • Cumulative line chart
    • 🧑‍🏫Help Tellius learn
    • 🕵️‍♂️Search history
    • 🎙️Voice-driven search
    • 🔴Live Query mode
  • 📈Vizpads (Explore)
    • 🙋Meet Vizpads!
    • 👋Get familiar with our Vizpads
    • #️⃣Measures, dimensions, date columns
    • ✨Creating Vizpads
    • 🌐Applying global filters
      • Filters in multi-BV Vizpads
      • Filters using common columns
    • 📌Applying local filters
    • 📅Date picker in filters
      • Customizing the calendar view
    • ✅Control filters
      • Multi-select list
      • Single-select list
      • Range slider
      • Dropdown list
    • 👁️Actions in View mode
      • Interacting with the charts
    • 📝Actions in Edit mode
      • 🗨️Viz-level actions
    • 🔧Anomaly management for line charts
      • Instance level
      • Vizpad level
      • Chart level
    • ⏳Time taken to load a chart
      • Instance level
      • Vizpad level
      • Chart level
    • ♟️Working with sample datasets
    • 🔁Swapping Business View of charts
      • Swapping only the current Vizpad
      • Swapping multiple objects
      • Configuring the time of swap
    • 🤖Explainable AI charts
  • 💡Insights (Discover)
    • 👋Get familiar with our Insights
    • ❓Understanding the types of Insights
    • 🕵️‍♂️Discovery Insights
    • ➕How to create new Insights
      • 🔛Creating Discovery Insight
      • 🔑Creating Key Driver Insights
      • 〰️Creating Trend Insights
      • 👯Creating Comparison Insights
    • 🧮The art of selecting columns for Insights
      • ➡️How to include/exclude columns?
  • 🔢Data
    • 👋Get familiar with our Data module
    • 🥂Connect
    • 🪹Create new datasource
      • Connecting to Oracle database
      • Connecting to MySQL database
      • Connecting to MS SQL database
      • Connecting to Postgres SQL database
      • Connecting to Teradata
      • Connecting to Redshift
      • Connecting to Hive
      • Connecting to Azure Blob Storage
      • Connecting to Spark SQL
      • Connecting to generic JDBC
      • Connecting to Salesforce
      • Connecting to Google cloud SQL
        • Connecting to a PostgreSQL cloud SQL instance
        • Connecting to an MSSQL cloud SQL instance
        • Connecting to a MySQL Cloud SQL Instance
      • Connecting to Amazon S3
      • Connecting to Google BigQuery
        • Steps to connect to a Google BigQuery database
      • Connecting to Snowflake
        • OAuth support for Snowflake
        • Integrating Snowflake with Azure AD via OAuth
        • Integrating Snowflake with Okta via OAuth
        • Azure PrivateLink
        • AWS PrivateLink
        • Best practices
      • Connecting to Databricks
      • Connecting to Databricks Delta Lake
      • Connecting to an AlloyDB Cluster
      • Connecting to HDFS
      • Connecting to Looker SQL Interface
      • Loading Excel sheets
      • 🚧Understanding partitioning your data
    • ⏳Time-to-Live (TTL) and Caching
    • 🌷Refreshing a datasource
    • 🪺Managing your datasets
      • Swapping datasources
    • 🐣Preparing your datasets
      • 🤾Actions that can be done on a dataset
      • Data Pipeline
      • SQL code snippets
      • ✍️Writeback window
      • 🧩Editing Prepare → Data
      • Handling null or mismatched values
      • Metadata view
      • List of icons and their actions
        • Functions
        • SQL Transform
        • Python Transform
        • Standard Aggregation
        • Creating Hierarchies
      • Dataset Scripting
      • Fusioning your datasets
      • Scheduling refresh for datasets
    • 🐥Preparing your Business Views
      • 🌟Create a new Business View
      • Creating calculated columns
      • Creating dynamic parameters
      • Scheduling refresh for Business Views
      • Setting up custom calendars
    • Tellius Engine: Comparison of In-Memory vs. Live Mode
  • Feed
    • 📩What is a Feed in Tellius?
    • ❗Alerts on the detection of anomalies
    • 📥Viewing and deleting metrics
    • 🖲️Track a new metric
  • Assistant
    • 💁Introducing Tellius Assistant
    • 🎤Voice-based Assistant
    • 💬Interacting with Assistant
    • ↖️Selecting Business View
  • Embedding Tellius
    • What you should know before embedding
    • Embedding URL
      • 📊Embedding Vizpads
        • Apply and delete filters
        • Vizpad-related actionTypes
        • Edit, save, and share a Vizpad
        • Keep, remove, drill sections
        • Adding a Viz to a Vizpad
        • Row-level policy filters
      • 💡Embedding Insights
        • Creating and Viewing Insights
      • 🔎Embedding Search
        • Search query execution
      • Embedding Assistant
      • 🪄Embedding Kaiya
      • Embedding Feed
  • API
    • Insights APIs
    • Search APIs
    • Authentication API (Login API)
  • ✨What's New
    • Release 5.4
      • Patch 5.4.0.x
    • Release 5.3
      • Patch 5.3.1
      • Patch 5.3.2
      • Patch 5.3.3
    • Release 5.2
      • Patch 5.2.1
      • Patch 5.2.2
    • Release 5.1
      • Patch 5.1.1
      • Patch 5.1.2
      • Patch 5.1.3
    • Release 5.0
      • Patch 5.0.1
      • Patch 5.0.2
      • Patch 5.0.3
      • Patch 5.0.4
      • Patch 5.0.5
    • Release 4.3 (Fall 2023)
      • Patch 4.3.1
      • Patch 4.3.2
      • Patch 4.3.3
      • Patch 4.3.4
    • Release 4.2
      • Patch 4.2.1
      • Patch 4.2.2
      • Patch 4.2.3
      • Patch 4.2.4
      • Patch 4.2.5
      • Patch 4.2.6
      • Patch 4.2.7
    • Release 4.1
      • Patch 4.1.1
      • Patch 4.1.2
      • Patch 4.1.3
      • Patch 4.1.4
      • Patch 4.1.5
    • Release 4.0
Powered by GitBook

© 2025 Tellius

On this page

Was this helpful?

Export as PDF
  1. Search
  2. Know your charts in Tellius

Cumulative line chart

Building cumulative line charts: Tracking growth and trends over time

A cumulative line chart is a type of chart that displays the cumulative sum of a variable over time. It is similar to a regular line chart, but instead of showing the value of the variable at each point in time, it shows the total value of the variable up to that point in time.

Cumulative line charts are often used to track changes in a variable over time and to identify trends and patterns in the data. They can be especially useful when working with data that accumulates or grows over time, such as sales figures or website traffic.

To create a cumulative line chart with a unique count, use the following SQL code to transform the data during the data preparation stage. The resulting column can be used for visualizing the chart on Vizpad.

SQL code to transform the data for creating a cumulative line chart

The output of the following SQL code can be used to create a cumulative line chart that shows trends in the number of unique campaigns over time and across different countries. The chart will show the total number of campaigns up to a certain point in time and allow for easy comparison of the total number of campaigns across different countries and over different time periods.

/* to display the cumulative number of unique campaigns per month and country */

select a.*, c.Cumulative_Campaigns from Table_Name a

 left join 

 (select b.*, SUM(b.Unique_Campaigns) over ( partition by b.Country order by b.Month ) as Cumulative_Campaigns from 

       ( select Month , Country , count(distinct Email_campaign_name ) as Unique_Campaigns 

 from Table_Name group by Month , Country ) b

 ) c

 on a.Month = c.Month and a.Country = c.Country

First subquery (b)

Initially, a subquery labeled (b) is created, which counts the number of unique campaigns per month and country. This is accomplished by selecting the Month, Country, and counting the distinct Email_campaign_name. Then, the subquery groups the data by Month and Country.

Second subquery with window function (c)

Next, a second subquery labeled as (c) uses the window function SUM() to calculate the cumulative number of unique campaigns per month and country (using the results from the first subquery (b)). The SUM() function is applied to the Unique_Campaigns column over a partition of Country, ordered by Month.

Outer query

The outer query selects all columns from the table (a) and the Cumulative_Campaigns column from the subquery (c) based on matching values for Month and Country. The left join ensures that all records from the table are included in the output, even if there are no matching records in the subquery.

PreviousAdvanced AnalyticsNextHelp Tellius learn

Last updated 1 year ago

Was this helpful?

🔍
📊