Tellius
  • 🚩Getting Started
    • 👋Say Hello to Tellius
      • Glossary
      • Tellius 101
      • Navigating around Tellius
      • Guided tours for quick onboarding
    • ⚡Quick Start Guides
      • Search
      • Vizpads (Explore)
      • Insights (Discover)
    • ✅Best Practices
      • Search
      • Vizpads (Explore)
      • Insights (Discover)
      • Predict
      • Data
    • ⬇️Initial Setup
      • Tellius architecture
      • System requirements
      • Installation steps for Tellius
      • Customizing Tellius
    • Universal Search
    • 🏠Tellius Home Page
  • Kaiya
    • ♟️Understanding AI Agents & Agentic Flows
      • Glossary
      • Composer
      • 🗝️Triggering an agentic workflow
      • The art of possible
      • Setting up LLM for Kaiya
    • 🤹Kaiya conversational AI
      • ❓FAQs on Kaiya Conversations
      • Triggering Insights with "Why" questions
      • Mastering Kaiya conversational AI
  • 🔍Search
    • 👋Get familiar with our Search interface
    • 🤔Understanding Tellius Search
    • 📍Search Guide
    • 🚀Executing a search query
      • Selecting a Business View
      • Typing a search query
      • Constructing effective search queries
      • Marketshare queries
    • 🔑Analyzing search results
      • Understanding search results
      • Search Inspector
      • Time taken to execute a query
      • Interacting with the resulting chart
    • 📊Know your charts in Tellius
      • Understanding Tellius charts
      • Variations of a chart type
      • Building charts from Configuration pane
      • List of chart-specific fields
      • Adding columns to fields in Configuration pane
      • Absolute and percentage change aggregations
      • Requirements of charts
      • Switching to another chart
      • Formatting charts
      • Advanced Analytics
      • Cumulative line chart
    • 🧑‍🏫Help Tellius learn
    • 🕵️‍♂️Search history
    • 🎙️Voice-driven search
    • 🔴Live Query mode
  • 📈Vizpads (Explore)
    • 🙋Meet Vizpads!
    • 👋Get familiar with our Vizpads
    • #️⃣Measures, dimensions, date columns
    • ✨Creating Vizpads
    • 🌐Applying global filters
      • Filters in multi-BV Vizpads
      • Filters using common columns
    • 📌Applying local filters
    • 📅Date picker in filters
      • Customizing the calendar view
    • ✅Control filters
      • Multi-select list
      • Single-select list
      • Range slider
      • Dropdown list
    • 👁️Actions in View mode
      • Interacting with the charts
    • 📝Actions in Edit mode
      • 🗨️Viz-level actions
    • 🔧Anomaly management for line charts
      • Instance level
      • Vizpad level
      • Chart level
    • ⏳Time taken to load a chart
      • Instance level
      • Vizpad level
      • Chart level
    • ♟️Working with sample datasets
    • 🔁Swapping Business View of charts
      • Swapping only the current Vizpad
      • Swapping multiple objects
      • Configuring the time of swap
    • 🤖Explainable AI charts
  • 💡Insights (Discover)
    • 👋Get familiar with our Insights
    • ❓Understanding the types of Insights
    • 🕵️‍♂️Discovery Insights
    • ➕How to create new Insights
      • 🔛Creating Discovery Insight
      • 🔑Creating Key Driver Insights
      • 〰️Creating Trend Insights
      • 👯Creating Comparison Insights
    • 🧮The art of selecting columns for Insights
      • ➡️How to include/exclude columns?
  • 🔢Data
    • 👋Get familiar with our Data module
    • 🥂Connect
    • 🪹Create new datasource
      • Connecting to Oracle database
      • Connecting to MySQL database
      • Connecting to MS SQL database
      • Connecting to Postgres SQL database
      • Connecting to Teradata
      • Connecting to Redshift
      • Connecting to Hive
      • Connecting to Azure Blob Storage
      • Connecting to Spark SQL
      • Connecting to generic JDBC
      • Connecting to Salesforce
      • Connecting to Google cloud SQL
        • Connecting to a PostgreSQL cloud SQL instance
        • Connecting to an MSSQL cloud SQL instance
        • Connecting to a MySQL Cloud SQL Instance
      • Connecting to Amazon S3
      • Connecting to Google BigQuery
        • Steps to connect to a Google BigQuery database
      • Connecting to Snowflake
        • OAuth support for Snowflake
        • Integrating Snowflake with Azure AD via OAuth
        • Integrating Snowflake with Okta via OAuth
        • Azure PrivateLink
        • AWS PrivateLink
        • Best practices
      • Connecting to Databricks
      • Connecting to Databricks Delta Lake
      • Connecting to an AlloyDB Cluster
      • Connecting to HDFS
      • Connecting to Looker SQL Interface
      • Loading Excel sheets
      • 🚧Understanding partitioning your data
    • ⏳Time-to-Live (TTL) and Caching
    • 🌷Refreshing a datasource
    • 🪺Managing your datasets
      • Swapping datasources
    • 🐣Preparing your datasets
      • 🤾Actions that can be done on a dataset
      • Data Pipeline
      • SQL code snippets
      • ✍️Writeback window
      • 🧩Editing Prepare → Data
      • Handling null or mismatched values
      • Metadata view
      • List of icons and their actions
        • Functions
        • SQL Transform
        • Python Transform
        • Standard Aggregation
        • Creating Hierarchies
      • Dataset Scripting
      • Fusioning your datasets
      • Scheduling refresh for datasets
    • 🐥Preparing your Business Views
      • 🌟Create a new Business View
      • Creating calculated columns
      • Creating dynamic parameters
      • Scheduling refresh for Business Views
      • Setting up custom calendars
    • Tellius Engine: Comparison of In-Memory vs. Live Mode
  • Feed
    • 📩What is a Feed in Tellius?
    • ❗Alerts on the detection of anomalies
    • 📥Viewing and deleting metrics
    • 🖲️Track a new metric
  • Assistant
    • 💁Introducing Tellius Assistant
    • 🎤Voice-based Assistant
    • 💬Interacting with Assistant
    • ↖️Selecting Business View
  • Embedding Tellius
    • What you should know before embedding
    • Embedding URL
      • 📊Embedding Vizpads
        • Apply and delete filters
        • Vizpad-related actionTypes
        • Edit, save, and share a Vizpad
        • Keep, remove, drill sections
        • Adding a Viz to a Vizpad
        • Row-level policy filters
      • 💡Embedding Insights
        • Creating and Viewing Insights
      • 🔎Embedding Search
        • Search query execution
      • Embedding Assistant
      • 🪄Embedding Kaiya
      • Embedding Feed
  • API
    • Insights APIs
    • Search APIs
    • Authentication API (Login API)
  • ✨What's New
    • Release 5.4
      • Patch 5.4.0.x
    • Release 5.3
      • Patch 5.3.1
      • Patch 5.3.2
      • Patch 5.3.3
    • Release 5.2
      • Patch 5.2.1
      • Patch 5.2.2
    • Release 5.1
      • Patch 5.1.1
      • Patch 5.1.2
      • Patch 5.1.3
    • Release 5.0
      • Patch 5.0.1
      • Patch 5.0.2
      • Patch 5.0.3
      • Patch 5.0.4
      • Patch 5.0.5
    • Release 4.3 (Fall 2023)
      • Patch 4.3.1
      • Patch 4.3.2
      • Patch 4.3.3
      • Patch 4.3.4
    • Release 4.2
      • Patch 4.2.1
      • Patch 4.2.2
      • Patch 4.2.3
      • Patch 4.2.4
      • Patch 4.2.5
      • Patch 4.2.6
      • Patch 4.2.7
    • Release 4.1
      • Patch 4.1.1
      • Patch 4.1.2
      • Patch 4.1.3
      • Patch 4.1.4
      • Patch 4.1.5
    • Release 4.0
Powered by GitBook

© 2025 Tellius

On this page

Was this helpful?

Export as PDF
  1. Data
  2. Preparing your datasets

Writeback window

Customize how your dataset is published back

PreviousSQL code snippetsNextEditing Prepare → Data

Last updated 4 months ago

Was this helpful?

This “Writeback” window is where you finalize your dataset export. You pick which columns to include, preview your data for sanity checks, specify whether you’re appending or overwriting existing content, and confirm the path. This flexible approach ensures you can customize exactly how your dataset is published back into the required connector.

Writeback eliminates the need for switching between applications to make data updates. It allows you to edit directly within the platform. Team members can add or update records directly, fostering effective team collaboration.

Clicking on the Export icon under Data → Prepare → Data shows the following list of possible export targets.

  1. CSV (Local export): Generates a CSV file that you can download or store locally.

  2. HDFS (Write-back to Hadoop): Writes the dataset back into your Hadoop Distributed File System. This can be a path like hdfs://namenode:8020/user/username/export_path/ where you ensure Tellius has the right HDFS credentials/permissions to write to that location.

  3. Snowflake/ Redshift/ MySQL/ other connectors: (Write back) Indicates various Snowflake or similar warehouse connectors. They let you push data to cloud or on-prem databases, enabling deeper integration with your enterprise data environment. By selecting the appropriate connector, you effectively choose where and how to store your curated dataset once you’re done preparing it in Tellius.

  • Path/Table you want to write to: Allows you to specify exactly where the new exported file or table should reside in the target system. For example, with HDFS, you provide the HDFS URI (hdfs://namenode:8020/...) and subdirectory path. For other connectors, this would be a table name.

  • All columns: Every column in the dataset will be exported. You can also selectively include or exclude columns for the export.

  • Append: Adds these rows at the end of an existing file or table (if the connector supports it). Useful if you’re incrementally adding new records to a historical dataset.

  • Overwrite: Completely replaces any existing file or table at the path with this new dataset. Overwriting is handy if you want to refresh the entire dataset from scratch in the target system.

The table will be updated and a message will be displayed informing the refresh of the dataset.

The presence of connectors indicates that Tellius can function as not just an ingestion/analysis platform but also a data integration hub. You can take the curated or transformed dataset and place it back into a system where:

  • Other tools can read or analyze it.

  • It can be versioned or integrated with an existing data lake or warehouse.

  • You can set up downstream processes—like additional transformations, ML pipelines, or data sharing.

Best practices

  • CSV is ideal for local, smaller exports or quick data sharing. HDFS or Snowflake or other connectors is typically better for high-volume scenarios.

  • Write-back requires that the user or system has correct credentials, roles, or grants (e.g., permission to create or replace tables, or to write to an HDFS path).

  • Depending on the connector, you may choose to overwrite an existing table/path or append rows. For warehouse exports, check if there’s an existing table with the same name that might be overwritten.

  • Large datasets can take time to write. Some connectors have file-size or row-count constraints. Keep an eye on the Notifications tab.

  • For example, if you have a list of customers and you want to add more without changing the existing customers' details, use the append operation. Or, if you have an outdated list of customers and you have a new list, you might choose to overwrite the old list with the new one.

🔢
🐣
✍️
Export menu
Writeback window