Tellius
  • 🚩Getting Started
    • šŸ‘‹Say Hello to Tellius
      • Glossary
      • Tellius 101
      • Navigating around Tellius
      • Guided tours for quick onboarding
    • ⚔Quick Start Guides
      • Search
      • Vizpads (Explore)
      • Insights (Discover)
    • āœ…Best Practices
      • Search
      • Vizpads (Explore)
      • Insights (Discover)
      • Predict
      • Data
    • ā¬‡ļøInitial Setup
      • Tellius architecture
      • System requirements
      • Installation steps for Tellius
      • Customizing Tellius
    • Universal Search
    • šŸ Tellius Home Page
  • Kaiya
    • ā™ŸļøUnderstanding AI Agents & Agentic Flows
      • Glossary
      • Composer
      • šŸ—ļøTriggering an agentic workflow
      • The art of possible
      • Setting up LLM for Kaiya
    • 🤹Kaiya conversational AI
      • ā“FAQs on Kaiya Conversations
      • Triggering Insights with "Why" questions
      • Mastering Kaiya conversational AI
  • šŸ”Search
    • šŸ‘‹Get familiar with our Search interface
    • šŸ¤”Understanding Tellius Search
    • šŸ“Search Guide
    • šŸš€Executing a search query
      • Selecting a Business View
      • Typing a search query
      • Constructing effective search queries
      • Marketshare queries
    • šŸ”‘Analyzing search results
      • Understanding search results
      • Search Inspector
      • Time taken to execute a query
      • Interacting with the resulting chart
    • šŸ“ŠKnow your charts in Tellius
      • Understanding Tellius charts
      • Variations of a chart type
      • Building charts from Configuration pane
      • List of chart-specific fields
      • Adding columns to fields in Configuration pane
      • Absolute and percentage change aggregations
      • Requirements of charts
      • Switching to another chart
      • Formatting charts
      • Advanced Analytics
      • Cumulative line chart
    • šŸ§‘ā€šŸ«Help Tellius learn
    • šŸ•µļøā€ā™‚ļøSearch history
    • šŸŽ™ļøVoice-driven search
    • šŸ”“Live Query mode
  • šŸ“ˆVizpads (Explore)
    • šŸ™‹Meet Vizpads!
    • šŸ‘‹Get familiar with our Vizpads
    • #ļøāƒ£Measures, dimensions, date columns
    • ✨Creating Vizpads
    • 🌐Applying global filters
      • Filters in multi-BV Vizpads
      • Filters using common columns
    • šŸ“ŒApplying local filters
    • šŸ“…Date picker in filters
      • Customizing the calendar view
    • āœ…Control filters
      • Multi-select list
      • Single-select list
      • Range slider
      • Dropdown list
    • šŸ‘ļøActions in View mode
      • Interacting with the charts
    • šŸ“Actions in Edit mode
      • šŸ—ØļøViz-level actions
    • šŸ”§Anomaly management for line charts
      • Instance level
      • Vizpad level
      • Chart level
    • ā³Time taken to load a chart
      • Instance level
      • Vizpad level
      • Chart level
    • ā™ŸļøWorking with sample datasets
    • šŸ”Swapping Business View of charts
      • Swapping only the current Vizpad
      • Swapping multiple objects
      • Configuring the time of swap
    • šŸ¤–Explainable AI charts
  • šŸ’”Insights (Discover)
    • šŸ‘‹Get familiar with our Insights
    • ā“Understanding the types of Insights
    • šŸ•µļøā€ā™‚ļøDiscovery Insights
    • āž•How to create new Insights
      • šŸ”›Creating Discovery Insight
      • šŸ”‘Creating Key Driver Insights
      • ć€°ļøCreating Trend Insights
      • šŸ‘ÆCreating Comparison Insights
    • 🧮The art of selecting columns for Insights
      • āž”ļøHow to include/exclude columns?
  • šŸ”¢Data
    • šŸ‘‹Get familiar with our Data module
    • šŸ„‚Connect
    • 🪹Create new datasource
      • Connecting to Oracle database
      • Connecting to MySQL database
      • Connecting to MS SQL database
      • Connecting to Postgres SQL database
      • Connecting to Teradata
      • Connecting to Redshift
      • Connecting to Hive
      • Connecting to Azure Blob Storage
      • Connecting to Spark SQL
      • Connecting to generic JDBC
      • Connecting to Salesforce
      • Connecting to Google cloud SQL
        • Connecting to a PostgreSQL cloud SQL instance
        • Connecting to an MSSQL cloud SQL instance
        • Connecting to a MySQL Cloud SQL Instance
      • Connecting to Amazon S3
      • Connecting to Google BigQuery
        • Steps to connect to a Google BigQuery database
      • Connecting to Snowflake
        • OAuth support for Snowflake
        • Integrating Snowflake with Azure AD via OAuth
        • Integrating Snowflake with Okta via OAuth
        • Azure PrivateLink
        • AWS PrivateLink
        • Best practices
      • Connecting to Databricks
      • Connecting to Databricks Delta Lake
      • Connecting to an AlloyDB Cluster
      • Connecting to HDFS
      • Connecting to Looker SQL Interface
      • Loading Excel sheets
      • 🚧Understanding partitioning your data
    • ā³Time-to-Live (TTL) and Caching
    • 🌷Refreshing a datasource
    • 🪺Managing your datasets
      • Swapping datasources
    • 🐣Preparing your datasets
      • 🤾Actions that can be done on a dataset
      • Data Pipeline
      • SQL code snippets
      • āœļøWriteback window
      • 🧩Editing Prepare → Data
      • Handling null or mismatched values
      • Metadata view
      • List of icons and their actions
        • Functions
        • SQL Transform
        • Python Transform
        • Standard Aggregation
        • Creating Hierarchies
      • Dataset Scripting
      • Fusioning your datasets
      • Scheduling refresh for datasets
    • 🐄Preparing your Business Views
      • 🌟Create a new Business View
      • Creating calculated columns
      • Creating dynamic parameters
      • Scheduling refresh for Business Views
      • Setting up custom calendars
    • Tellius Engine: Comparison of In-Memory vs. Live Mode
  • Feed
    • šŸ“©What is a Feed in Tellius?
    • ā—Alerts on the detection of anomalies
    • šŸ“„Viewing and deleting metrics
    • šŸ–²ļøTrack a new metric
  • Assistant
    • šŸ’Introducing Tellius Assistant
    • šŸŽ¤Voice-based Assistant
    • šŸ’¬Interacting with Assistant
    • ā†–ļøSelecting Business View
  • Embedding Tellius
    • What you should know before embedding
    • Embedding URL
      • šŸ“ŠEmbedding Vizpads
        • Apply and delete filters
        • Vizpad-related actionTypes
        • Edit, save, and share a Vizpad
        • Keep, remove, drill sections
        • Adding a Viz to a Vizpad
        • Row-level policy filters
      • šŸ’”Embedding Insights
        • Creating and Viewing Insights
      • šŸ”ŽEmbedding Search
        • Search query execution
      • Embedding Assistant
      • šŸŖ„Embedding Kaiya
      • Embedding Feed
  • API
    • Insights APIs
    • Search APIs
    • Authentication API (Login API)
  • ✨What's New
    • Release 5.4
      • Patch 5.4.0.x
    • Release 5.3
      • Patch 5.3.1
      • Patch 5.3.2
      • Patch 5.3.3
    • Release 5.2
      • Patch 5.2.1
      • Patch 5.2.2
    • Release 5.1
      • Patch 5.1.1
      • Patch 5.1.2
      • Patch 5.1.3
    • Release 5.0
      • Patch 5.0.1
      • Patch 5.0.2
      • Patch 5.0.3
      • Patch 5.0.4
      • Patch 5.0.5
    • Release 4.3 (Fall 2023)
      • Patch 4.3.1
      • Patch 4.3.2
      • Patch 4.3.3
      • Patch 4.3.4
    • Release 4.2
      • Patch 4.2.1
      • Patch 4.2.2
      • Patch 4.2.3
      • Patch 4.2.4
      • Patch 4.2.5
      • Patch 4.2.6
      • Patch 4.2.7
    • Release 4.1
      • Patch 4.1.1
      • Patch 4.1.2
      • Patch 4.1.3
      • Patch 4.1.4
      • Patch 4.1.5
    • Release 4.0
Powered by GitBook

Ā© 2025 Tellius

On this page
  • Handling null values
  • Handling mismatched values

Was this helpful?

Export as PDF
  1. Data
  2. Preparing your datasets

Handling null or mismatched values

Manage missing data and reconcile inconsistent entries in columns

PreviousEditing Prepare → DataNextMetadata view

Last updated 4 months ago

Was this helpful?

A colored bar (usually, green or red) below the column name indicates the percentage of data found in the column’s recognized data type (e.g., date/time, numeric, or string).

For example, when you hover over the colored bar in the column stats pop-up and it reads ā€œMain type (type:string) 100.00%,ā€ it indicates that all the values in that column conform to the ā€œstringā€ classification—there are no exceptions detected. If some values were recognized as non-numeric, you might see a different percentage.

Handling null values

This ā€œHandle null valuesā€ window helps you decide how to treat missing numeric data. Handling nulls prevents analytics or machine learning models from crashing or producing skewed results. You can choose the strategy (drop, mean, zero, or custom) that best suits your data’s context.

Upon clicking the info icon near the column name, you can see the following window:

For non-numeric column types (such as string and timestamp), only "Drop rows" and "Fixed value" options will be displayed.

This window shows you how to deal with missing (null) numeric values in that column, offering several methods of replacement or removal:

  1. Drop Rows

  • Removes any rows in the dataset where this column is null.

  • If nulls are sparse (like 0.12% of data) and these records aren’t critical to your analysis.

  • However, too many drops can shrink your dataset significantly if nulls are more common.

  1. Mean

  • Replaces each null value with the average of the non-null entries in that column.

  • However, the mean might not be meaningful if the distribution is highly skewed or if outliers heavily affect the average.

  1. Zero: Replaces nulls with the numeric value 0 (zero).

  2. Fixed Value: Replaces null values with a custom numeric you specify (e.g., 9999, 100, etc.).

Handling mismatched values

Mismatched values happen when a column has a handful of entries that do not conform to the assigned column type. Addressing them ensures the column is consistent—critical for aggregations, data quality, and subsequent analytics or modeling.

Columns with mismatched values can be idenitifed with the red info icon near the column name and the bar below the column name will be red in color. Click on the red icon to reconcile those outliers with the column’s primary data type. The following window appears:

  1. Drop rows:

    • Removes any rows where the column value is the wrong type.

    • Helpful if mismatches are extremely rare (like 0.01%) and you prefer a strictly numeric dataset with no placeholders.

  2. Mean

    • Computes the column’s average from non-mismatched rows, then replaces each outlier with that mean.

    • When you want to preserve row count and approximate the missing value with the column’s average.

  3. Zero: Replaces mismatched string entries with 0.0.

  4. Treat as String: Changes the entire column’s type to string, ignoring numeric logic. The numeric values become text.

  5. Fixed value: Replaces mismatched string entries with a custom numeric constant you specify.

šŸ”¢
🐣
% of values found in the column data type
Handling null values
Handling mismatched values